

www.AMTI.biz | sales@amtimail.com

MC5-1250 SPECIFICATIONS

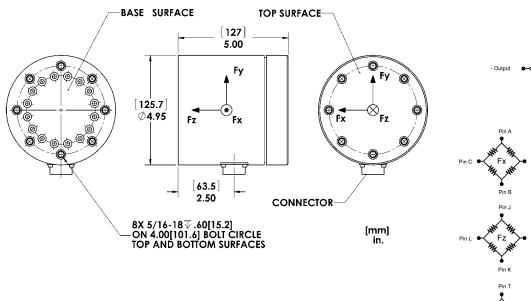
127 x 125.7 mm

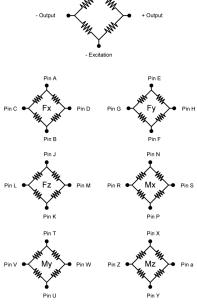
The MC5 is a cylindrical, six-axis transducer with threaded inserts on its top and bottom surfaces. The body of the load cell is manufactured from high strength aluminum with an anodized finish. An elastomeric 0-ring seal protects the strain gages and wiring. Internal sealing of the strain gages further ensures long life and consistent, reliable performance.

Units: Metric ▼ Capacity: 5560 N ▼

Dimensions(LxDia.)

Weight	3.18 Kg.			Sensing elements			Strain gage bridge		
Channels	Fx, Fy, Fz, Mx, My, Mz			Amplifier			Required		
Body Material	Aluminum			Analog outputs			6 Channels		
Temperature range	-17.78 to 51.67°C			Digital outputs			None		
Excitation	10V maximum			Crosstalk			< 2% on all channels		
Fx, Fy, Fz hysteresis	± 0.2% full scale output			Fx, Fy, Fz non-linearity			± 0.2% full scale output		
Channel	Fx	Fy	Fz	Units	Mx	Му	Mz	Units	
Capacity	2780	2780	5560	Ν	203	203	141	N-m	
Sensitivity	0.899	0.899	0.225	μv/v-N	20.37	20.37	12.4	μv/v-N-m	
Natural frequency	-	-	-	Hz	440	440	-	Hz	
Stiffness (X 105)	210	210	1052	N/m	0.847	0.847	0.565	N-m/rad	
Resolution	To determine the resolution of your system, please use our <u>Output Calculator.</u>								
Notes:	The Fx, Fy, and Fz capacities can be exceeded by a factor of 3 as long as the Mx, My, and Mz capacities are not exceeded.								
	The Mx and My capacities are calculated in reference to the transducer origin located 2.37 in (6 cm) below the top surface.								
	The listed natural frequency is the lowest natural frequency for the force sensor and will dominate.								


Published specifications subject to change without notice.


13/12/2016	Biomechanics Biotribology Biomedical and Human Performance Related Products Multi-Axis Force Plates, Force Sensors, Instrumented Equipme.

TECHNICAL DRAWINGS

Footprint Drawing

Electrical Drawing

Bridges Fz; Mz = 700 ohms Bridges Fx; Fy; Mx; My; = 350 ohms Connector Type: Souriau 851-02E16-26P50-44

© Advanced Mechanical Technology, Inc.

176 Waltham Street, Watertown, MA 02472-4800 USA

1-617-926-6700